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The main goal of this chapter is to defend a new view on causal reasoning, a hybrid
representation account. In both psychology and philosophy, different frameworks of
causal reasoning compete, each endowed with its distinctive strengths and weak-
nesses and its preferred domains of application. Three frameworks are presented
that either focus on dependencies, dispositions, or processes. Our main claim is that
despite the beauty of a parsimonious unitary account, there is little reason to assume
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that people are restricted to one type of representation of causal scenarios. In contrast
to causal pluralism, which postulates the coexistence of different representations in
causal reasoning, our aim is to show that competing representations do not only
coexist, they can also actively influence each other. In three empirical case studies,
we demonstrate how causal dependency, causal dispositional, and causal process rep-
resentations mutually interact in generating complex representations driving causal
inferences.
1. INTRODUCTION

Causal reasoning is one of our most central cognitive competencies,
enablingus to adapt to ourworld.Theubiquity of causal reasoninghas attracted
researchers fromvarious disciplines to this topic. Philosophers have studied cau-
sality for centuries, but more recently the topic has also motivated research in
the fields of psychology, economics, biology, physics, anthropology, statistics,
and artificial intelligence, to name just a few. Thus, causality is a genuinely
interdisciplinary topic attracting both researchers interested in developing
normative methods of causal discovery, and researchers pursuing the descriptive
goal to capture how humans and non-human animals actually reason about
causal relations (see Waldmann, in press; Waldmann & Hagmayer, 2013,
for overviews).

Most theories of causal reasoning proposed in psychology have precursors
in philosophy and other normative disciplines (see Waldmann & Hagmayer,
2013). Although the research goals of normative and descriptive theories
differ, it is not an accident that the theories overlap. Both scientists and
laypeople develop causal hypotheses that they intend to be correct. Thus,
causal claims typically are associated with normative force (see Spohn,
2002; Waldmann, 2011). This commonality may be the reason why psychol-
ogists often turn to normative theories as an inspiration for psychological
accounts. An examples of this long tradition are causal Bayes nets that have
first been developed in philosophy and engineering (see Pearl, 1988, 2000;
Spirtes, Glymour, & Scheines, 2000) but have also been adopted by psychol-
ogists as models of everyday causal reasoning (see Rottman & Hastie, 2014;
Waldmann, 2016; Waldmann & Hagmayer, 2013, for reviews).

Despite the common goals of scientists and laypeople, however, it is
implausible to expect that (descriptive) psychological accounts will exactly
mimic normative theories that were developed for scientists to guide
research in their specific domain. Causal domains substantially differ so
that a method that has been developed for economics and sociology will
differ from methods suitable for research in physics. By contrast, laypeople
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use causal knowledge in various everyday domains including intuitive phys-
ics, biology, psychology, or sociology. Also, unlike scientists, they typically
have little knowledge about the mechanisms governing these domains (see
Rozenblit & Keil, 2002).

Another difference between normative and descriptive approaches is that
philosophers and scientists interested in methodology generally try to
develop a uniform coherent account that is grounded in few basic principles.
Coherence, consistency, simplicity, and parsimony belong to the key qual-
ities that researchers try to accomplish. By contrast, laypeople are often sat-
isficers. They use methodological tools that work for a given problem but
they often care little about overall coherence and consistency (see Arkes,
Gigerenzer, & Hertwig, 2016).

A sign of the plurality of causal concepts in everyday thinking is that in
psychology different frameworks and theories of causal reasoning compete.
These frameworks and theories differ in terms of how they model causality
and causal reasoning. We will use the term framework to describe classes of
theories that use substantially different theoretical concepts to capture cau-
sality. They also often differ in the tasks they are trying to model. Within
each framework there are various theories competing for the best explana-
tion of the tasks addressed by the framework.

In the next section, we will briefly describe the main assumptions of
different competing frameworks of causal reasoning. Then, we will elabo-
rate our main claim that in everyday causal reasoning people simultaneously
use multiple mutually interacting representations that can be grounded in
the different frameworks of causality. These so-called “hybrid” causal repre-
sentations may often lack overall consistency and parsimony but they may
better capture reasoning in everyday contexts than approaches that strictly
follow the regulations of axiomatized normative theories. In contrast to
pluralistic views according to which different representations are indepen-
dently used in different contexts, we argue that different causal representa-
tions constrain each other in a given reasoning context and that such hybrid
representations are at least locally consistent. We present three empirical case
studies that bolster our claims.

2. FRAMEWORKS OF CAUSAL REASONING

In this section, we describe different frameworks of causal reasoning
that originally have been inspired by different philosophical accounts.
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Each of the frameworks comes in numerous variants both in philosophy and
psychology. We focus here on the prototypic features and only briefly point
to variations. The main distinguishing features of these frameworks, which
we discuss in the following sections, are the proposed causal relata (ie, the
type of entities that enter causal relations) and the causal relations that are
used to represent causal scenarios.
2.1 The Dependency Framework
The dependency view of causation is shared by several psychological theories
that otherwise compete with each other, including associative theories (see Le
Pelley, Griffiths, & Beesley, in press), covariation theories (eg, Cheng &
Novick, 1992; Perales, Catena, C�andido, & Maldonado, in press), power
PC theory (Cheng, 1997), causal model theories (eg, Gopnik et al., 2004;
Rehder, in press; Rottman, in press; Sloman, 2005; Waldmann & Holyoak,
1992; Waldmann, Holyoak, & Fratianne., 1995), and Bayesian inference the-
ories (Griffiths & Tenenbaum, 2005, 2009; Lu, Yuille, Liljeholm, Cheng, &
Holyoak, 2008; Meder, Mayrhofer, & Waldmann, 2014; for overviews see
Holyoak & Cheng, 2011; Waldmann, 2016; Waldmann &Hagmayer, 2013).

According to dependency theories, a variable C is a cause of its effect E if
variable E depends upon C. There is an extensive debate in philosophy
about the proper causal relata in dependency theories (eg, events, proposi-
tions, facts, properties, or states of affairs; see Ehring, 2009; Spohn, 2012).
For our purposes, however, it is sufficient to adopt the terminology of causal
model theory (eg, structural equations and causal Bayes nets; see Halpern &
Hitchcock, 2015), according to which the world can be properly repre-
sented in terms of random variables (and their values) and the dependencies
between them. In causal model theories, causal relations are graphically
depicted by causal arrows that are directed from cause to effect (see
Fig. 1). For example, a causal model could be postulated that uses the binary
variables representing the effect forest fire (present vs. absent) and the poten-
tial causes match (eg, dropped by an arsonist vs. not dropped) and lightning
(A) (B)

Figure 1 An example of a common-cause structure (A) with a cause variable C and two
effect variables E1 and E2, and a common-effect structure (B) with two cause variables
C1 and C2, and an effect variable E.
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(present vs. absent) (see the common-effect model in Fig. 1B). The depen-
dencies, then, encode a set of hypothetical situations consistent with the
causal model. To describe an actual case of causation, the variables are instan-
tiated (eg, match dropped, lightning absent, and fire present). All theories
use some kind of statistical measure of covariation to describe the strength
of these relations although they differ in terms of how these statistical mea-
sures are interpreted.

A useful distinction is to separate sample-based and model-based depen-
dency theories (see Dwyer & Waldmann, in press; Griffiths & Tenenbaum,
2005; Meder et al., 2014). Sample-based theories assume that the observed
covariation in a sample is a direct measure of causation. In the binary case,
causes raise or lower the probability of their effects. Sometimes temporal order
is added as a cue that helps distinguishing between cause and effect (ie, causes
precede effects). Examples for these theories are associative theories or tradi-
tional probabilistic theories (see Le Pelley et al., in press; Perales et al., in press,
for overviews). A more recent development separates the observed sample
from the underlying causal structure that presumably generated the observed
covariations. According to this view, observed data are used to make infer-
ences about the hypothetical generating causal structure, for example about
unobservable causal powers or whether or not there is a causal relation be-
tween two variables (eg, Cheng, 1997; Griffiths & Tenenbaum, 2005; Lu
et al., 2008; Meder et al., 2014; Pearl, 2000). Causal directionality is a feature
of the underlying hidden causal structure because the observed covariations
are symmetric. Therefore, different proposals have been made about how
to identify causal direction, including a recourse to temporal order
(Johnson-Laird & Khemlani, in press; Spohn, 2012), counterfactuals (Lewis,
1973), hidden mechanisms (Pearl, 2000), or hypothetical interventions
(Halpern & Hitchcock, 2015; Spirtes et al., 2000; Woodward, 2003).

Causal models also allow for a representation of mechanisms which within
this framework are conceived as chains or networks of interconnected inter-
dependent variables (see later sections for different views on mechanisms). For
example, the covariation between smoking and lung cancer can be further
elaborated by specifying intermediate variables, such as genetic alterations
caused by the inhalation of carcinogenic substances.

Causal model theories are particularly good at explaining how people
make statistical inferences from observed causes to effects (predictive
reasoning) or from observed effects to probable causes (diagnostic reasoning;
see Fernbach, Darlow, & Sloman, 2011; Meder et al., 2014; Meder &
Mayrhofer, in press; Waldmann & Holyoak, 1992; Waldmann, 2000).
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They can also capture teleological explanations (Lombrozo, 2010) and plan-
ning processes (Pearl, 2000). One particularly important feature that sets them
apart from purely associative accounts is their capability to predict the out-
comes of hypothetical interventions when only observational knowledge is
available (Meder, Hagmayer, & Waldmann, 2008, 2009; Pearl, 2000; Spirtes
et al., 2001; Waldmann & Hagmayer, 2005). Finally, an important feature of
these theories is that they can be easily applied to the question how people
learn and acquire causal representations through covariation learning.

Although various psychological studies have shown that causal model the-
ories capture the key features of human causal reasoning well, there are also
important deviations from the normative model, some of which are addressed
later (see Rehder, 2014, in press; Rottman &Hastie, 2014; Rottman, in press;
Waldmann & Hagmayer, 2013, for overviews).

An important distinguishing feature between frameworks are the tasks
they use in experimental research. The fact that dependency theories focus
on causal dependencies between variables is also manifest in the typical empir-
ical research paradigms. In experiments, causal information is presented in
terms of described (eg, Ali, Chater, & Oaksford, 2011; Fernbach et al.,
2011; Rehder, 2014) or experienced (eg, Gopnik et al., 2004; Waldmann,
2000) covariations between causal variables that represent events. Typical ex-
amples of cover stories are scenarios that describe medicines causing headache
(eg, Buehner, Cheng, & Clifford, 2003), foods causing allergies (eg, Shanks &
Darby, 1998), chemicals or radiation causing the expression of genes or dis-
eases (eg, Griffiths & Tenenbaum, 2005; Perales, Catena, & Maldonado,
2004), or fertilizers causing plants to bloom (eg, Lien & Cheng, 2000).

2.2 The Disposition Framework
A completely different view, which can be traced back to Aristotle’s treat-
ment of causation (see Kistler & Gnassounou, 2007), addresses the question
why an observed lawful relation holds by focusing on the participants
involved in a causal interaction; for example, the two colliding balls in
Michotte’s (1963) task or aspirin and a person with a headache in a medical
scenario. A dispositional account of causation would say that the ingestion of
aspirin relieves headache because aspirin has an intrinsic property, a disposi-
tion (or capacity, potentiality, power), to relieve headaches in suitable or-
ganisms, which interacts with the disposition of human bodies to be
influenced by aspirin. According to this view, dependency relations are sec-
ondary; they arise as a product of the interplay of objects that are endowed
with causal dispositions.
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Thus, one important difference between dependency and dispositional
theories concerns the causal relata. Whereas dependency theories focus on
variables that, for instance, encode the presence or absence of events, dispo-
sitional theories use objects as primary entities. These objects can refer to both
humans or nonhuman entities (eg, aspirin). The dispositions of objects can
be static (eg, solubility of sugar) or they can be transient and dynamic
such as the sudden exertion of force when pushing an object. Causal rela-
tions are not represented as dependency relations between variables or
events but are situations that arise when objects are placed in specific situa-
tional contexts allowing them to express their powers. For example, neither
aspirin nor the person suffering from headache are per se cause and effect.
Only when placed in the right context (eg, aspirin being ingested by the
body of a person), the observed causal relation between events arises (eg,
relieving headache). Thus, the lawful relations between events that are the
focus of dependency theories are actually secondary here; they arise because
dispositional properties of objects generate them. In this way, dispositional
views are looking for deeper explanations of observed dependencies under-
lying the observed covariation. One can see this as a focus on underlying
mechanisms; however, the mechanisms have different properties from
mechanisms modeled within the dependency framework (eg, as chains or
networks of variables).

Different theories within the dispositional framework vary with respect
to the abstractness of the postulated dispositions and object types. Some the-
ories just distinguish between two classes of objects, for example causal agents
and causal patients, others use more elaborate characterizations of disposi-
tional properties.

A popular theory, especially in linguistics, is force dynamics. This theory
has initially been developed and empirically tested in the context of verb se-
mantics and uses fairly abstract characterizations (see G€ardenfors, 2014; Levin
& Rappaport Hovav, 2005; Riemer, 2010; Talmy, 1988). Theories of force
dynamics typically assume that in a specific causal interaction there are two
types of entities, which have been labeled differently, but which we will call
causal agent and causal patient (for short: agent and patient). This distinction
between agents and patients can be traced back to Aristotle who explained
efficient causation as a consequence of the interaction of these two entities.
Talmy (1988), who invented the theory of force dynamics, uses the terms
agonist and antagonist to describe the relevant objects. Talmy argues that in-
tuitions about the interaction of causal forces are an important component of
our general semantic intuitions.
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G€ardenfors (2014) describes a patient as an animate or inanimate,
concrete or abstract object that is acted on by causal agent. It can carry a
counterforce resisting the action of the agent, which is the more active ob-
ject that generates a force on the patient, either directly or indirectly via an
instrument. The agent force represents the action of the agent. Forces are
primarily physical but they can be extended metaphorically to social or
mental forces (eg, threats, commands, and persuasions). G€ardenfors uses
this framework to represent events and causation. In his two-vector model
of a causal event, an agent exerts a force on a patient which leads to a result
vector (eg, a movement of the patient). Like forces in general, the result vec-
tor need not be restricted to physical changes. Changes regarding other
properties of the patients can also be represented.

Force dynamics has been used in linguistics to characterize verb semantics
and argument structure. In these theories, verbs place constraints on the
possible objects mentioned in the noun phrases. For example, in “Peter
pushes Mary,” “push” has two arguments, one describing an agent (Peter),
the other the patient (Mary). Typically, agents are assigned the syntactic sub-
ject position.

The psychological sibling of linguistic versions of force dynamics, Wolff’s
(2007) force theory (later called dynamics model; Wolff, Barbey, &
Hausknecht, 2010), initially aimed at elucidating our understanding of ab-
stract causal concepts, such as cause, prevent, enable, and despite (see also Wolff,
2012; Wolff & Song, 2003). Later it has been extended to describe represen-
tations of specific visually or linguistically conveyed scenarios. Force theory
states that people evaluate configurations of forces attached to affectors (ie,
agents) and patients, which may vary in direction and degree, with respect
to an end state. As in G€ardenfors’ (2014) theory, forces are abstract represen-
tations and can describe physical, social, or psychological causal influences.
Causal events are analyzed in terms of three components: (1) the prior ten-
dency of a patient toward the end state, (2) the concordance between agent
and patient force, and (3) whether the end state is reached or not. For
example, a scenario in which the patient does not have a tendency
toward the end state (eg, a boat standing still in the middle of a lake) and
the affector force (eg, wind) is directed toward an end state that is eventually
reached would be construed as a case of cause (ie, “The wind caused the boat
to reach the harbor.”).

While theories of force dynamics have primarily been developed in lin-
guistics from where they were imported into psychology, philosophers have
independently developed related kinds of dispositional theories. Unlike
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psychologists, who are mainly interested in how people represent causality
regardless of the correctness of their beliefs, philosophers endorsing disposi-
tionalism try to develop a normative account. Therefore, philosophical the-
ories use more elaborate characterizations of dispositional properties and do
not restrict their theories to just two types of entities, agents and patients. For
example, the philosopher Nancy Cartwright (1999) has proposed that
observed lawful regularities (dependencies in our terminology) can only
be understood if they are analyzed as arising from abstract or concrete
“nomological machines” in which parts with attached causal powers are ar-
ranged in some spatiotemporal arrangement, which when put in the right
constellation give rise to observed regularities. Cartwright discusses various
examples of nomological machines, which range from abstract constellations
(economics, planetary movements) to specific devices (pendulum, toilet
cistern) (see also Cartwright & Pemberton, 2012).

One specific model of a dispositional theory of causation, which we have
adopted in our second case study (see Section 4.2), is the vector model of
Mumford and Anjum (2011). In their view, causation is a relation between
properties of objects (see Fig. 6A, for an example). When a bag of apples on
some weighing scale moves the pointer of the scale, it is the property of
weight that does the causal work. Properties are, in the theory of Mumford
and Anjum, clusters of powers that dispose objects in specific directions. For
example, fire has the power or disposition to warm nearby things. Disposi-
tions can be silent (eg, solubility) until put into the right circumstances;
causation occurs when the dispositions manifest themselves.

Mumford and Anjum (2011) formalize this general idea using vector di-
agrams. The vector diagrams represent a specific moment of a causal situa-
tion. The various powers in operation at a particular moment can be
represented as a bunch of vectors within a (multidimensional) quality space.
In a simple case, the quality space is one-dimensional running from one
extreme (eg, hot) to the opposite (cold). The quality space has a vertical
line in the middle, which represents the momentary state of the situation
with respect to some variable of interest, for example, the temperature of
a room. Attached to this line are various vectors representing powers that
dispose the situation in different directions. These vectors can vary in direc-
tion and length with length representing their intensity. For example, a fire
strongly disposes a room toward warmth, whereas a simultaneously present
open window may dispose it toward a colder state. Each situation therefore
can be represented as a large set of vectors that represent powers in different
directions and strengths. The authors suggest that the powers can be added
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up leading to a resultant vector representing the overall causal disposition of
the situation.

Another example for the vector model would be a situation with a one-
dimensional quality space representing bodily health versus disease. Various
factors, for example, lack of sleep, stress, and genetic dispositions, may repre-
sent powers pointing toward disease, whereas the ingestion of drugs and
sunlight might represent countervailing powers. Thus, each situation needs
to be characterized by a very large number of powers. This view contrasts
with the typical analysis within dependency frameworks in which often
only few causes are listed to explain an effect. The vector model captures
causal changes well in which continuous properties change, such as heat.
To be able to also explain causation with binary effects that can either be
present or absent, Mumford and Anjum extended the vector model by add-
ing a threshold that a resultant vector would have to pass to become visible as
an effect (see Fig. 6A).

In psychology, the tasks studied to test dispositional theories differ from
the ones used to test dependency theories. Psychological research on dispo-
sitional theories focuses on language or perceptual scenes as target domains.
Tasks are presented that activate already present causal knowledge. Learning
has not been formally addressed within this framework. Moreover, the
causal scenarios that are typically studied are fairly simple. One reason for
this limitation may be that verbs in most cases just involve one agent and
one patient. There are studies on causal chains (Wolff et al., 2010) but infer-
ences in other more complex causal models with multiple causal relations
have not been studied yet. The main goal has been to study how people un-
derstand causal scenarios rather than modeling complex predictive or diag-
nostic inferences or learning.

2.3 The Process Framework
A third class of theories holds the assumption that causation cannot be un-
derstood as a relation between events or objects, but arises from continuous
processes and interactions between processes. According to Salmon (1984) a
process is anything with structure over time. A key issue is how causal pro-
cesses can be distinguished from non-causal time lines. For example, atoms
decaying or billiard balls moving across the table are examples of causal pro-
cesses, whereas moving shadows or spots of lights are pseudo-processes ac-
cording to this view. The core idea of process theories is that causation
involves some kind of transfer of quantity from cause to effect. Most ac-
counts are restricted to physical causation and turn to physics to identify
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the right kind of quantity that is being propagated (see Paul & Hall, 2013).
Fair (1979) suggests energy, while Salmon (1984) and Dowe (2000) propose
that any kind of conserved quantity (eg, linear momentum, charge) is
transmitted.

According to the process framework, causal processes are the primary ba-
sis of causation, whereas events are secondary abstractions of the underlying
processes. Thus, whereas within the dependency view (eg, Bayes nets)
mechanisms are represented as chains of events, process theories would
view these chains as abstractions over causal processes that determine
whether a chain of events is causal or spurious.

So far process theories are of limited value for psychology because most
laypeople do not have deep knowledge about physics. Moreover, the the-
ories seem to be restricted to physical domains, it is unclear how they would
model causal reasoning in other domains, such as psychology, sociology,
economics, or biology. However, these accounts do capture the intuition
of people that some kind of hidden process seems to link causes and effects,
for example when we observe billiard balls hitting each other (Michotte,
1963). Moreover, they could provide an account for why we often do
not consider all dependency relations causal, for example the covariation be-
tween spuriously related events (eg, barometer and weather) or relations be-
tween omissions and outcomes. We do not, for example, consider it a cause
of the drying of Putin’s lawn that we did not water it. However, there are
cases in which we do consider omissions to be causal (see Lombrozo, 2010)
which led to extensions of process theories requiring the addition of coun-
terfactual reasoning elements to account for these findings (see Dowe,
2000).

3. HYBRID CAUSAL REPRESENTATIONS

In Section 2, different frameworks of causal reasoning have been pre-
sented. They differ in terms of the causal relata they invoke and the way causal
relations are construed. Moreover, these architectural differences are tied to
specific kinds of tasks that each framework favors to support its theory. For
example, dependency theories often are tested by using learning data pre-
senting causal variables (eg, contingency tables), whereas dispositional the-
ories are mostly studied presenting linguistic phrases or perceptual
scenarios about interacting objects. Moreover, the frameworks differ in
terms of the inferences that can easily be modeled. Dependency theories
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are designed to explain learning and predictive and diagnostic inferences
within causal models, whereas dispositional theories focus on causal under-
standing and the semantic parsing of causal scenes.

3.1 Unitary Versus Pluralistic Causal Theories
One clear evidence for the division of labor between frameworks is that they
hardly ever are applied to the tasks of the competitor. For example, psycho-
linguists generally do not use Bayes nets, whereas dispositional theories are
usually not applied to causal learning tasks.

Nevertheless, there are attempts to defend a unitary causal account
against the threat of overly flexible multisystem accounts that often can be
too easily adapted to whatever finding comes along. Unitary theories are
attractive because they promise a maximum of coherence and consistency.
Different attempts to explain tasks studied by competing frameworks have
therefore been made. For example, Cheng (1993) has applied a dependency
theory to the Michotte task, Wolff (2014) has argued for force dynamics as
an overarching model, and Sloman, Barbey, and Hotaling (2009) have pro-
posed that Bayes nets can account for different meanings of abstract causal
verbs (cause, prevent, enable), thus directly competing with force dynamic the-
ories. However interesting these attempts are, it seems fair to say that they
did not convince the community of causal reasoning researchers to switch
their respective theoretical framework and converge on a unitary one. Ad-
aptations to different tasks are in some instances possible but tensions remain
between the prime domain of application of the frameworks and their suc-
cess in explaining phenomena in a different domain.

A tempting alternative that has been proposed by a number of philoso-
phers and psychologists is to suggest causal pluralism. Since different domains
seem to be best handled by different theories, why not accept all of them as
possible accounts? An extreme version of pluralism has been proposed by
Cartwright (2004) who argued in her article “Causation: One word,
many things” that causal relations in the real world are too diverse to be
captured by the abstract terms “cause” and “effect.” For example, saying
that pistons suck air in or that carburetors feed petrol to a car’s engine pro-
vides specific information far beyond saying that some cause influences some
effect.

More parsimonious accounts of causal pluralism have also been suggested
(see Godfrey-Smith, 2009). A popular distinction has been proposed by Hall
(2004) who differentiated between difference-making and production
(roughly corresponding to our contrast between dependency theories and
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process or mechanism theories). An example for a pluralistic account in psy-
chology comes from Lombrozo (2010) who contrasted functional and
mechanistic explanations which rely on different concepts of causation (de-
pendency vs. process/mechanisms). Which concept is activated depends on
the domain and the type of causal relation in question. For example,
whereas, according to Lombrozo, omissions are rarely viewed as causes in
physical domains, they may count as causes when intentional agents are
involved.

In sum, the general idea of causal pluralism is that different concepts of
causation may coexist, and be differentially activated by properties of the
domain and task (see also Schlottmann & Shanks, 1992, for a different
pluralistic account).

3.2 Hybrid Accounts
While pluralist theories suggest that different versions of causal representa-
tions coexist and are activated in a domain and task-specific fashion, hybrid
theories assume some kind of active collaboration between different types of
representations.

We have already encountered one example of such a view, Cartwright’s
(1999) dispositional power theory. Cartwright claims that causal depen-
dencies (ie, lawful relations) are generated by nomological machines that consist
of interrelated parts. The powers of these parts give rise to the dependencies
we observe. Moreover, the empirically observed dependencies provide cues
to dispositional properties of the parts of the underlying nomological
machines.

Another example for an attempt to show that different views, in this case
an interventionist dependency account and process theories, may collaborate
is the proposal by Woodward (2011) who argued that dependency informa-
tion and geometrical/mechanical information are not competing but may
constrain each other. As stated above, causal mechanisms can be captured
within dependency accounts as fine-grained chains or networks of interde-
pendent causal variables. However, how these networks are configured also
often depends on the components of a mechanism being in the right spatio-
temporal configuration. For example, biochemical mechanisms only go for-
ward when various reaction products are brought together in the right
spatial position at the right time (Bechtel, 2006).

A related example of a hybrid account from psychology are hierarchical
theories that combine top-down domain knowledge with causal Bayes nets.
Waldmann (1996) has argued that the structure and parameterization of
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causal Bayes nets often is influenced by abstract and domain-specific knowl-
edge about properties of causal relations. For example, Waldmann (2007)
has presented evidence showing that domain knowledge about different
types of interactions of physical quantities influences the functional form
of how multiple causes of a common effect are assumed to be combined
(see also Griffiths & Tenenbaum, 2009). An example of the integration be-
tween intuitive Newtonian physics with probabilistic inference in causal
models was offered by Gerstenberg and Tenenbaum (in press; see also
Sanborn, Mansinghka, & Griffiths, 2013).

The present chapter also argues that people use hybrid rather than
unitary or pluralistic representations in causal reasoning. We go beyond pre-
vious attempts of hierarchically combining domain knowledge with proba-
bilistic dependency representations by including all three frameworks of
causal reasoning: dependency, dispositional, and process theories. We
demonstrate that people often use hybrid representations combining intui-
tions motivated by different frameworks that in the literature have often
been described as contradicting each other and therefore as competing.

In some limiting cases, especially with tasks designed to test a specific the-
ory, causal reasoning may be well explained by a unitary theory but our
claim is that in more typical situations multiple representations interact
and constrain each other. There is no reason to assume that people are
restricted to one type of representation when trying to understand a causal
situation. Outside the laboratory, causal information does not come in
conveniently preprocessed modes as, for example, in trial-by-trial learning
studies. When we observe causal scenarios there are multiple ways to cate-
gorize what we see. We can distill an event or a process representation from
the scene or focus on the objects involved in causal interactions. All these
possibilities do not exclude each other. It is more plausible that multiple
sources of information are simultaneously processed and mutually constrain
each other. Which of the different representations becomes the predomi-
nant driver of performance may also depend on the task at hand. Predictive
inferences may rely more on information about event contingencies,
whereas explanatory goals may lead to reflections about the powers of com-
ponents. Language understanding will activate different processes than
observational learning, but in many cases these two sources of knowledge
will interact.

We believe that restricting the learning inputs to specific types of formats
exaggerates the value of individual frameworks as models of causal
reasoning. Both inside and outside the laboratory, we are confronted with
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different formats. For example, most experiments studying human learning
combine a phase in which verbal instructions inform about causal relations
followed by a presentation of trial-by-trial information about individual
cases. Theoretical accounts of learning then tend to focus on the trial-by-
trial learning component instead of asking how the verbally conveyed in-
structions interact with the learning mechanisms.

A further advantage of a hybrid theory is that such a theory can close gaps
that unitary accounts leave. Causal dependency information is often accom-
panied by information about the components and processes that constitute
the mechanisms, with both types of information constraining our depen-
dency intuitions. On the other hand, dispositional knowledge may be ac-
quired on the basis of covariational learning input. For example, that
wind has the power to move boats needs to be learned first based on obser-
vations of covariations. Thus, combining the different approaches should
lead to a more complete theory of causal cognition.

Although the assumption that people use hybrid representations is
certainly attractive, no formal theory has been developed that combines the-
ories from all three frameworks into a unified overarching theory. Such a
theory is certainly an important goal, but is beyond the scope of the present
chapter. Our research goal is more modest. We are looking for experimental
demonstrations of how representations from different competing frame-
works interact. Using computational modeling, we will in two of these three
case studies demonstrate how we envision the interaction between the
frameworks in the particular cases.

4. CASE STUDIES

In the following sections, we will present three case studies, which
demonstrate the usefulness of a hybrid account of causal representations.
The first two case studies show how dispositional and dependency intuitions
collaborate in the way causal inferences are made. The third case study ad-
dresses physical causation (Michotte task) and shows that both dispositional
and process intuitions influence causal perception.

4.1 Study 1: The Interaction of Dispositional Intuitions and
Dependency RepresentationsdMarkov Violations as a
Test Case

Our first test case explores the interaction between dispositional knowledge
and dependency representations (see Mayrhofer & Waldmann, 2015, for a
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more detailed presentation). We have seen that both paradigms have their
strengths and weaknesses. Dispositional theories dominate as explanations
of linguistic intuitions about causality. By contrast, dependency theories,
causal Bayes nets in particular, provide a compact theory of statistical infer-
ences in complex causal models.

Experiments testing how people make such statistical causal inferences
typically start with linguistic instructions about the presented causal sce-
narios. Experimenters use their semantic intuitions when proposing a causal
model representation for the task, and frequently cover stories are modified
when subjects do not seem to conform to the intuitions of the experimenter.
The assumptions linking verbally conveyed cover stories to subjects’ causal
model representation are, however, mostly left implicit. Our proposal is
that dispositional intuitions conveyed by the linguistic cover stories
describing causal scenarios constrain the structuring and parameterization
of subjects’ causal models and therefore influence statistical inferences in a
systematic fashion.

4.1.1 Agents and Causes
To demonstrate that dispositional intuitions can have an impact on
reasoning with dependency representations, we aimed at presenting a situ-
ation in which causal dependencies are kept constant while dispositional in-
tuitions about the participants taking part in the causal relations were varied.
More specifically, we used the distinction between causal agents and causal
patients that is fundamental in many dispositional theories of causation (see
Section 2.2). To pit dispositional intuitions against dependency information,
we compared situations in which the mapping between cause/effect and
agent/patient roles was manipulated (see Fig. 2). While in one condition
the cause involved an agent and the effect a patient, in the contrasted con-
dition the cause involved the patient and the effect the agent. This way we
could empirically dissociate the influence of the two distinctions.

Conditions in which an agent is involved in the cause event are ubiqui-
tous and seem to be the standard case in causal scenarios. Most cover stories
describe scenarios in which causes and agents are confounded, such as food
causing allergies, radiation causing diseases, and medicine relieving headache
(see also Section 2.1). In all these cases, the cause event involves an entity
that is plausibly viewed as the more active part of the causal relation. How-
ever, there are situations in which the mapping is reversed. For example,
consider a driver who stops in front of a red light. In this situation many peo-
ple would see the driver as the causal agent who has control over the



Figure 2 A single causeeeffect relation with (A) the agent role attached to the cause
event and (B) the agent role attached to the effect event. From Mayrhofer, R., &
Waldmann, M. R. (2015). Agents and causes: dispositional intuitions as a guide to causal
structure. Cognitive Science, 39, 72. Reprinted with permission from Wiley.
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situation. But the causal dependency actually runs from the light to the
driver. The light is the cause of the driver’s behavior which can be easily
seen with an intervention test: If somebody intervenes and turns off the
light, the behavior of the driver would change, whereas manipulating the
behavior of the driver by other means does not affect the light.

In psycholinguistics these kinds of reversals have been discussed in the
context of the semantic analysis of psych(ological) verbs (see Brown & Fish,
1983; Landau, 2010; Pinker, 1991; Semin & Fiedler, 1988, 1991; Rudolph
& F€orsterling, 1997). Psych verbs reverse the usual mappings between causal
roles and grammatical categories. In “Peter pushes Mary,” Peter is the agent,
the cause, and the subject of the sentence, while Mary is the object, the pa-
tient, and is involved in the effect event; this is the standard mapping. In
“The show amused Bill,” however, the agent (or more specifically the expe-
riencer) is placed in the object role, while causal dependency runs from
properties of the show to Bill’s emotional reaction. Other examples of psych
verbs, which do not necessarily refer to animate agents, are perceiving,
receiving, detecting, or reading.

To implement different mappings between cause/effect vs. agent/pa-
tient, we used a cover story about aliens adapted from Steyvers, Tenenbaum,
Wagenmakers, and Blum (2003). The cover story generally mentioned four
aliens whose thoughts are being transferred to each other. In one experi-
ment, we used a common-cause model with one alien’s thoughts being
transmitted to the three other aliens (see Fig. 1A, for a common-cause model
with two effects). In general, we kept the roles of cause and effects constant
across different conditions. One alien (eg, top alien in Fig. 3), the cause, was



Figure 3 A common-cause model of aliens whose thoughts were transferred (sending
vs. reading) from the top alien, the cause, to the bottom aliens, the effects. From
Mayrhofer, R., & Waldmann, M. R. (2015). Agents and causes: dispositional intuitions as a
guide to causal structure. Cognitive Science, 39, 85. Reprinted with permission from Wiley.
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described as having a specific thought first which then causes the same
thoughts in the effect aliens (eg, bottom aliens in Fig. 3). Thus, the thoughts
of the effect aliens were temporally preceded by the thought of the cause
alien and depended on it. Represented as a causal Bayes net, the arrows
need to be directed from cause alien to effect aliens as in Fig. 1A.

To manipulate the dispositional roles of agents and patients, we used
different causal verbs. In one condition, the cause alien was described as be-
ing capable of sending its thoughts. This verb should establish the cause alien
as the agent and the effect aliens as patients (see Fig. 2A). In a contrasting
condition, the effect aliens were described as being capable of reading the
thoughts of the cause alien. In this condition, the effect aliens should be
viewed as the agents and the cause alien as the patient (see Fig. 2B).

Discussions with colleagues often led to the question whether the depen-
dency model was really kept constant across conditions; some suggested that
in the reading condition the causal arrows need to be reversed (as in
Fig. 1B). We believe that the reason for this confusion is that causal agents
are typically associated with the cause role. To make sure that subjects’ rep-
resentations of the task conform to the intended causal dependency, we tested
their intuitions in an experiment (Experiment 1a in Mayrhofer &Waldmann,
2015). We told subjects about two aliens, Gonz and Murks, who occasionally
think of the artificial word “POR.” As described above, we contrasted two
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conditions in which either the cause alien was capable of sending its thoughts
to the effect alien (sending condition) or the effect alien was capable of
reading the thoughts of the cause alien (reading condition). We additionally
instructed in both conditions that causal strength was high but not perfect and
that the effect alien occasionally also spontaneously thinks of POR on its own.
To test intuitions about causal dependency, we asked about the outcomes of
hypothetical interventions implanting thoughts in the cause or the effect alien.
If causal dependency runs from cause to effect in both conditions, as assumed,
implanting a POR-thought in the cause alien should increase the probability
of POR-thoughts in the effect alien independent of condition (sending vs.
reading). Implanting a POR-thought in the effect alien by external means
should not change the probability of the cause alien thinking of POR beyond
the base rate. The results clearly confirmed these predictions showing that
subjects’ representations of causal dependency were not influenced by the
manipulation of dispositional properties of the alien mind readers.

4.1.2 Agency, Accountability, and Error Attribution
Our general goal was to link dispositional intuitions with dependency repre-
sentations. Aswewill see, this is particularly interesting in cases inwhich causal
transmissions fail; that is, the cause is present but unexpectedly its effect fails to
materialize. For example, the cause alien may think of POR, but the effect
alien does not. In this case, the question of accountability naturally arises.
Who is to blame? Our general assumption was that intuitions about respon-
sibility would be moderated by dispositional role. In general, in agente
patient relations a failure will always be a joint result of the strength of the
agent and the resistance of the patient.However, since patients are considered
passive, being subject to acts by the agent, we suspected that without further
knowledge, agents should be primarily blamed for failures.We tested this pre-
diction in our domain by presenting subjects with two aliens as in the inter-
vention study (Experiment 1a, Mayrhofer & Waldmann, 2015) but now we
asked them about which of the two aliens was more responsible when the
thoughts of the cause alien failed to be transferred to the effect alien (Exper-
iment 1b, Mayrhofer & Waldmann, 2015). The results showed that errors
were attributed differently in the two contrasted conditions with stronger
attributions to the cause in the sending condition (cause as agent) compared
to the reading condition (effect as agent). While in the reading condition the
cause alien was only picked by 17.5% of the subjects as being more respon-
sible for causal failure, this number went up to 50% in the sending condition
(see also Mayrhofer & Waldmann, 2015, for further discussions).
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4.1.3 A Bayes Net Account of Error Attribution
The predictions about how accountability is distributed between agents and
patients can be translated into causal Bayes net representations. In causal Bayes
nets (see Fig. 1), failures of causes to generate their effect are typically coded by
the strength parameters attached to the causal arrows. Following Cheng
(1997), causal power (or strength) can be interpreted as the probability of a
cause producing its effect when alternative causes are hypothesized to be ab-
sent. Since causal failure is uniformly expressed in the strength parameter
regardless of its source, standard Bayes nets are ill equipped to express differ-
ential error attribution to agents and patients. To remedy this deficit, we pro-
posed to split up the error in two components, one attached to the cause (FC)
and one to the effect event (FE) (see Fig. 4A). With each cause C, an inde-
pendent hidden preventive node FC is associated that is connected to each
of its effects with equal strength. Moreover, each effect event has its own error
term FE. Thus, in the common-cause model shown in Fig. 4B a single hidden
error term FC is attached to the cause event with equally strong links leading
to each of the effects of the common cause. Moreover, there are three effect-
related errors FE attached to each of the effects individually.

Manipulating the strength of the links emanating from FC allows the
network to express how failures of sufficiency are distributed between cause
and effects. If the weights coming from FC are relatively high, errors are
mainly attributed to the object involved in the cause event (eg, the agent).
If these weights are low, failures are attributed more to the effect side.
(A)

(B)

Figure 4 Panel A shows an elemental causeeeffect relation with two sources of failure,
a cause-related error node FC and an effect-related error node FE (From Mayrhofer, R., &
Waldmann, M. R. (2015). Agents and causes: dispositional intuitions as a guide to causal
structure. Cognitive Science, 39, 75. Reprinted with permission from Wiley). Panel B shows
the augmented representation of a common-cause model with a single cause-related
preventive error node FC and three effect-related error nodes FE.
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Depending on where in the network agents and patients are located, setting
the weight parameters for FC relative to FE therefore allows us to express
differential attributions of errors.

4.1.4 Markov Violations as a Test Case
One of the central features of Bayes nets is theMarkov property according to
which each variable conditioned upon its direct causes is independent of all
other events, except for its direct and indirect effects. This property is one of
the defining features of Bayes nets. It is the key reason for their parsimony
because it allows for making local inferences without having to consider
all variables in the network. It suffices to focus on the causes of an effect
event to make a prediction about its status.

Despite its computational advantages, some philosophers (eg, Cartwright,
2007) have cast doubt on the adequacy of the Markov condition as a prop-
erty of causal relations in the world. Moreover, a number of empirical find-
ings have shown that subjects’ causal reasoning routinely tends to violate the
Markov condition. Initial evidence for this phenomenon came from exper-
iments by Rehder and Burnett (2005) in which subjects were presented with
a common-cause model in some domain (see Fig. 1A) and were asked to
judge how likely one of the effects is when they know for sure that the cause
is present. According to the Markov condition, the inference should flow
from cause to the target effect while being unaffected by the status of the
other effect variables. However, the results showed that subjects did not
ignore the collateral effects. When the other effects were present, the esti-
mates for the target effect were higher than when they were absent (see
also Walsh & Sloman, 2007).

A first reaction to these results was that subjects might not restrict them-
selves to the instructed common-cause model but might have augmented it
with hidden variables that expressed their domain knowledge about the
complex relations underlying the shown variables. Such an augmented
network may honor the Markov condition, while explaining the apparent
Markov violations in the restricted model presented in the instructions.
This explanation certainly is reasonable for real-world domains, for example
disease scenarios, to which subjects bring to bear prior knowledge. Howev-
er, this interpretation is weakened by a further experiment of Rehder and
Burnett (2005) that demonstrated Markov violations of equivalent size
with tasks in which just abstract lettered variables (A, B, C, and D) had
been presented without any reference to specific domains and mechanisms
(see also Rehder, 2014).
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In light of Markov violations even in abstract domains for which no
domain-specific knowledge is available, we suspected that abstract disposi-
tional assumptions may provide a more general explanation of this phenom-
enon. Given that causal agents are typically associated with cause events, an
abstract verbal instruction such as “A causes B” does not only describe a
dependency relation between A (the cause) and B (the effect) but also
implicitly assigns the agent role to the subject (A) and the patient role to
the object of the sentence (B).

To demonstrate that Markov violations were mediated by dispositional
intuitions about agency, we presented subjects with our instruction about
four aliens and manipulated agency as described above (sending vs. reading;
see Experiment 2 in Mayrhofer & Waldmann, 2015). To test for the exis-
tence and strength of Markov violations, we gave subjects in the test phase
several hypothetical test cases in which the cause alien either thinks of POR
or not, and in which the number of collateral effect aliens also thinking of
POR was manipulated (none, one, or two). For all these cases, we asked
subjects to estimate the number of cases out of 10 in which target effect alien
probably thinks of POR.

Our central hypothesiswas thatMarkov violations should beobserved to be
stronger when the cause alien was associated with the agent role (ie, sending
condition) than when the effect aliens were the agents (ie, reading condition).
In the sending condition, responsibility for errors should be more strongly
attributed to the cause alien.When, for example, the two collateral effect aliens
did not receive the thought of the cause alien, a plausible interpretation is that
somethingmust have gonewrongwith the sending capacity of the cause alien,
something which should affect all effects at once; thus, lower ratings for the
target effect are to be expected relative to cases in which everything seems
fine (eg, all collateral effect aliens had received the thought of the cause alien).

By contrast, in the reading condition errors should more strongly be
attributed to the effect aliens. The fact that two collateral readers fail to
achieve their goal should not be predictive of the capacity of the target alien.
Its reading capacity may still be intact despite the problems of the collateral
effect aliens. Thus, no (or at least much smaller) Markov violations were pre-
dicted for the reading scenario.

Fig. 5 shows the results. Generally the ratings were higher when the
cause alien thought of POR than when it did not think of POR, which
is consistent with the instructions. Moreover, there were no statistically sig-
nificant Markov violations when the cause was absent (ie, the cause alien
did not think of POR). This is also to be expected because in the absence
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Figure 5 Mean ratings (and standard errors) representing the estimates of the relative
number of times the target alien thinks of POR in 10 hypothetical situations. From
Mayrhofer, R., & Waldmann, M. R. (2015). Agents and causes: dispositional intuitions as a
guide to causal structure. Cognitive Science, 39, 86. Reprinted with permission from Wiley.
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of the cause no transmission of thoughts and hence no failure is possible.
Most importantly, we found the hypothesized interaction when the cause
was present (ie, the cause alien thought of POR). The positive slope in the
sender condition reveals a clear Markov violation. The estimates of the
likelihood of the target alien went up the more collateral aliens thought
of POR. By contrast, there was only a slight, but non-significant increase
in the reading condition, which is in line with our prediction. Thus, we
were able to manipulate the size of the Markov violations by manipulating
the dispositional properties of the involved causal participants.

Our proposed Bayes net representation can account for these findings
(Fig. 4B). In a common-cause model, a single independent hidden preven-
tive variable node representing FC is added to the model (and three error
terms for the effect nodes, FE). The state of the preventer FC is inferred based
on the status of the effects. Absent effects signal a higher likelihood of the
presence of FC than present effects. Since FC is linked to all three effects
with equal weights, its activation also dampens the prediction for the target
effect. The strength of the links of this preventive node FC relative to the
strengths of FE represent how strongly subjects attribute errors to the
cause node.
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Thus, when the cause event involves the agent, the strength of the
weights is set to a relatively high level, which entails a strong Markov viola-
tion. When the weights are relatively low, a weaker Markov violation is
predicted, as in the case when the agents are located on the effect side. In
this case, errors are more strongly attributed to each effect individually.
The model is similar to others suggested in the literature (Hausman &
Woodward, 1999; Rehder & Burnett, 2005; Walsh & Sloman, 2007).
The new feature is our proposed separation of sources of errors that are
attached to the cause and effect sides and whose settings are motivated by
the dispositional distinction between agents and patients involved in the
causal relations.
4.1.5 Alternative Theories
While many early studies on Markov violations had focused on the demon-
stration and explanation of its existence (eg, Rehder & Burnett, 2005), sub-
sequently the question whether and how the size of Markov violations can
be manipulated came to the forefront. Since we have proposed a hybrid ac-
count to explain such effects, it is interesting to compare our view with the
theories of others who argued with principles coming from within their
chosen unitary framework.

An important theory was proposed by Park and Sloman (2013). They
have presented several accounts, but we focus on the one which can be
viewed as a direct competitor to ours. Adopting a causal Bayes net repre-
sentation, they argue that the size of Markov violations is influenced by as-
sumptions about the causal mechanisms. Since causal mechanisms can be
easily represented in causal Bayes nets as chains of variables, this approach
does not require assumptions coming from other causal frameworks. Their
main hypothesis is that Markov violations in common-cause models will be
observed when the cause generates its different effects using the same type
of mechanism. Whether a mechanism is of the same or a different type is
determined by looking at the intervening variables mediating between
cause and effects. For example, when the causal model links smoking as
the cause with the two effects impairment to lung function and damage
to blood vessels, it is assumed that smoking leads to the two effects via
the same mechanism (ie, the same intermediate variable). The intermediate
variable plays a similar computational role as our hidden preventive node
FC, which both predict Markov violations. By contrast, when in a different
causal model smoking is linked to both an impairment of the lung function
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and a financial burden on the family budget, different mechanisms with
different intervening variables are involved. Hence, no Markov violation
is expected. These predictions were largely confirmed in the experiments
of Park and Sloman.

We did not directly test our theory against Park and Sloman’s (2013)
because our studies were conducted prior to the publication of their results.
However, it is useful to compare their account with the one we would pro-
pose. One advantage of our theory is that it is framed at a more abstract level
than the mechanism account; hence, it can also be applied to more abstract
tasks for which no mechanism knowledge is available, such as our alien sce-
nario or Rehder and Burnett’s (2005) experiment in which letters were used
to describe causal variables. Moreover, we would analyze the tasks of Park
and Sloman differently. In our view, it is not the different intervening vari-
ables that lead to the effects but the fact that in the two situations different
dispositional properties of the cause are relevant. In the homogeneous dis-
ease context, it is plausible that a single agent, smoke, is responsible for
both effects. However, in the separate mechanism condition, different
dispositional properties of cigarettes (smoke vs. cost), and, therefore,
different causal agents generate the two effects. Thus, in this case we would
also not expect a Markov violation.

This analysis also applies to Park and Sloman’s (2013) Experiment 3 in
which an abstract task with sliders being in different positions were presented
as causal variables. In the same mechanism condition all sliders have the same
color whereas in the different mechanism condition the two effects had
different colors and the cause was split in the middle with one of the colors
on one side, the other on the other side. Looking at the materials from our
perspective, we doubt that subjects have intuitions about same or different
intervening variables linking cause and effects here. What is salient, howev-
er, are the differences of the cause display, which either has a single or two
color features. Again, from a dispositional perspective one might argue that
subjects may have viewed the different colors as indicators of two indepen-
dently operating causal agents.

We do not want to argue that assumptions about mechanisms do not
play a role in explaining Markov violations. When mechanism knowledge
is available, it will certainly be used. However, in many cases we doubt
that people have the required knowledge (see also Rozenblit & Keil,
2002). Dispositional theories may be plausible candidates for explaining
different intuitions without requiring elaborate mechanism knowledge
about the nature of intermediate variables.
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4.2 Study 2: Mutual Constraints Between Dispositional
Intuitions and Dependency Knowledge

When we access knowledge about causal relations, we often have intuitions
about the strengths of the relations (see Fernbach et al., 2011; Fernbach & Erb,
2013, for Bayes net models of real-world knowledge). However, it is far from
clear where this knowledge comes from and how it is applied in different con-
texts. One source of knowledge about probabilistic causal relations may
certainly be experience. This factor has often been studied in learning exper-
iments (eg, Cheng, 1997; Griffiths & Tenenbaum, 2005; Waldmann, 2000;
see Rottman, in press, for an overview). Outside the laboratory, examples
may include physicians who see lots of patients or traders who watch changes
of the value of stocks. However, in many cases our knowledge is based on
verbal communication. We may read in text books or newspapers about
causal relations (eg, medicine), the nature of which is often not quantitatively
specified. Nevertheless, when we learn a new fact about a causal system, our
intuitions about the dependency relations may be altered.

In the present case study, our aim was to investigate the interplay be-
tween verbally conveyed dispositional knowledge and dependency intui-
tions in a more systematic fashion (cf. Mayrhofer, Quack, & Waldmann,
2016). While our focus in Case Study 1 was on how dispositional assump-
tions affect the structuring and parameterization of causal models, here we
were interested in the two-way interaction between dispositional intuitions
and dependency knowledge.
4.2.1 Probabilistic Force Model
Fig. 6 displays the key features of our probabilistic force modelwhich integrates
statistical dependencies and force intuitions. It is inspired by Wolff’s (2007)
force theory and Mumford and Anjum’s (2011) dispositional vector model
(see Fig. 6A and Section 2.2), here applied to agents and patients instead of
elemental properties of causal objects (Fig. 6B). In the following examples,
we will focus on standard cases in which agents are involved in cause
events.

Fig. 6B displays a simplified case of forces associated with an agent and
patient starting at a neutral point directed toward an effect (right side) or
away from the effect (left side). A threshold on the right side determines
whether the effect will be observed (shaded area). The key assumption is
that the resultant force of the interaction between causal agent and patient
(FResult) is an additive function of the force of the agent, FAgent, and the
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Figure 6 (A) An illustration of the dispositional vector model of causation (Mumford &
Anjum, 2011), (B) a simplified version which is the basis for the probabilistic force
model, (C) a demonstration of how vectors with uncertain length are linked with prob-
ability distributions to predict dependency intuitions (From Mayrhofer, R., Quack, B., &
Waldmann, M. R. (2016). Causes and forces: A probabilistic force dynamics model of causal
reasoning (in preparation)).
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counterforce of the patient, FPatient (see also Wolff, 2007). In Fig. 6B the
resulting force ends well beyond the threshold so that the effect is expected
to occur.

So far the vector representation is deterministic. To add uncertainty and
link force vectors with probabilistic dependency representations, we added
the assumption that some degree of uncertainty is attached to force



112 Michael R. Waldmann and Ralf Mayrhofer
representations. This uncertainty is represented by the Gaussian distributions
in Fig. 6C. In the present demonstration, we assume the standard deviations
of these distributions to be 1 and an arbitrary threshold. With these assump-
tions, conditional probabilities (and hence contingencies) can be translated
into force vectors and vice versa. For example, if in a data set a specific
probability of the effect conditional upon the presence of the cause,
P(EjC), is observed, then this probability should correspond to the result
vector, FResult, which represents the outcome of the interaction between
agent and patient. P(EjC) then is represented by the area of the
distribution of FResult that lies beyond the threshold; the remainder
represents P(non-EjC) (see Fig. 6C).

FPatient in turn represents the prior tendency of the patient that, in the
example, disposes away from the effect. Assuming uncertainty again, the ef-
fect may occasionally occur even when the agent (ie, cause event) is absent.
The likelihood of this happening depends on the length and the distribution
of the patient vector (the standard deviation is again assumed to be 1). Given
these assumptions, the expectation of the length of the patient vector is the
value for which P(Ejnon-C) corresponds to the area to the right of the
threshold of the patient vector distribution. The remaining area represents
P(non-Ejnon-C). Assuming additivity between agent and patient vectors
when determining the result vector, the expectation of the agent vector
can be calculated (see Fig. 6C).

4.2.2 Experiment
As an initial test of this idea, we ran an experiment in which 32 subjects
participated. Initially subjects were instructed that cows were bitten by
snakes that normally inject a certain amount of poison (eg, 400 mg).
Some of the cows receive a specific amount of an antidote (eg, 200 mg).
Then, in Phase 1 of the experiment, subjects were presented with contin-
gency data showing the number of dead or surviving cows when no antidote
was given versus when antidote was given (see, eg, Fig. 7). Four different
contingencies were presented to each subject in which we varied the base
rate of the effect, P(Ejnon-C), in two levels (0.4 vs. 0.8) and causal power
also in two levels (0.5 vs. 0.8) using Cheng’s (1997) power equations.

In this scenario, the survival of the cow is the target effect. The cover story
describes being poisoned as the default situation which was therefore modeled
as a property of the patient (along with other properties of cows that were
assumed to be invariant). The antidote represented the agent, which disposed
the cow toward the target effect. (Note, however, that these assignments are
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Figure 7 Example of contingency information presented to subjects in the experiment.
From Mayrhofer, R., Quack, B., & Waldmann, M. R. (2016). Causes and forces: a proba-
bilistic force dynamics model of causal reasoning (in preparation).
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relative to the given situation. In other contexts, the poison may be viewed as
the agent which interacts with physiological properties of the cows.)

In Phase 2 of the experiment, a new situation was verbally presented that
had never been observed before. Our key question was whether subjects were
able to translate these verbally conveyed changes into new base rate and causal
strength estimates without having seen new contingency data. To study this
competency, we varied agent force (amount of antidote: 50%, 100%, and
150% of previously observed amount) and the prior tendency of the patient
(amount of snake poison: 50%, 100%, and 150%), yielding a 3 � 3 � 4 (ie, 36
conditions) within-subject design. For example, in the test phase subjects in
one condition were asked to imagine a new geographical area in which
cows bitten by snakes are injected with 100 mg of poison (that is, 50% of
the previous amount). In this area, whenever an antidote was delivered,
300 mg were given (ie, 150% of the previous amount). Subjects were then
asked to estimate for this scenario how many out of 10 cows who had
been bitten and who would otherwise die would survive had they been given
the antidote. This question measures subjects’ intuitions about causal strength.
To measure intuitions about base rates, P(Ejnon-C), subjects were asked to
imagine 10 bitten cows and were then requested to judge how many of these
cows would survive without the antidote.
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The key question was whether subjects could translate the verbally pre-
sented numerical context changes into sensible probability estimates. The
probabilistic force model allows for such a translation between force repre-
sentations and dependencies by multiplying the length of the vectors by the
instructed change proportions (0.5, 1, and 1.5). These new vectors can then
be translated by the probabilistic force model into new base rate and strength
estimates.

The model makes four qualitative predictions, which were tested in the
experiment: First, base rate judgments, P(Ejnon-C), should be lowered
when the patient force (that disposes away from the effect in this case) is
increased by means of the instructions. In the experiment, this effect was
observed, F(2,62) ¼ 99.95, p < .001, h2p ¼ .76 (see Fig. 8A). Second, causal
strength estimates should decrease when the counterforce attached to the
patient is strengthened, which we also found, F(2,62) ¼ 100.34, p < .001,
h2p ¼ .76 (see Fig. 8A). Third, causal strength estimates are expected to in-
crease when the agent force becomes stronger, F(2,62) ¼ 153.03,
p < .001, h2p ¼ .83 (see Fig. 8B). Finally, the model predicts no effect of
agent force on base rate judgments. However, this effect unexpectedly
turned out to be significant, F(2,62) ¼ 6.95, p < .01, h2p ¼ .18, although
it is barely visible (see Fig. 8B) and the smallest of the observed effects in
the highly sensitive within-subject design.

In sum, Case Study 2 presented initial evidence for the newly developed
probabilistic force model that is capable of translating force changes
conveyed by verbal instructions into probabilistic inferences. Thus, the
model formalizes a possible interaction between two types of representa-
tions, dispositional intuitions about forces and causal dependencies.
4.3 Study 3: Dependencies, Processes, and Dispositions: The
Michotte Task

The third case study looks at a different phenomenon: causal perception. A
classic task demonstrating phenomenal causality is the Michotte task in
which subjects are presented with moving colliding objects (Michotte,
1963). In a launching scenario, for example, Object X, a ball, moves
toward a resting Object Y, another ball, and touches it. At this moment,
Object X stops and Object Y is set into motion eliciting a causal impression
(see Fig. 9, Condition A, for an illustration). The strength of the causal
impression depends on a number of parameters, including the time lag be-
tween X stopping and Y starting its movement, the spatial gap between X



Figure 8 Results of the probabilistic force experiment for (A) variation of agent force
(marginalized over patient force variation), and (B) variation of patient force (marginal-
ized over agent force variation). From Mayrhofer, R., Quack, B., & Waldmann, M. R. (2016).
Causes and forces: a probabilistic force dynamics model of causal reasoning (in
preparation).
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and Y, or the ratio of pre- and postmovement velocities of the objects (see,
eg, Hubbard, 2013; Scholl & Tremoulet, 2000).

In physics, movements and collisions of macroscopic objects can be pre-
dicted by Newtonian mechanics. Recently, Sanborn et al. (2013) proposed
the noisy Newton model that implements probabilistic Bayesian inference
over a Newtonian representation of the world. The key feature distinguishing
this psychological model fromNewtonian physics is that it is assumed that ob-
servations (eg, of object velocities) are noisy and therefore lead to some degree



Figure 9 Illustration of the experimental setup showing the spatial configuration of the
balls at significant time points in Conditions A to D. From Mayrhofer, R., & Waldmann, M.
R. (2014). Indicators of causal agency in physical interactions: the role of the prior context.
Cognition, 132, 486. Reprinted with permission from Elsevier.
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of uncertainty. The noisy Newton model has proven successful in predicting
judgments about masses of colliding objects. Moreover, Sanborn et al. applied
their noisy Newtonmodel to launching scenarios in which the spatiotemporal
gaps between the two balls were manipulated. The model correctly predicts
that increasing gaps lead to a lowering of judgments of causality.

However, one phenomenon resists explanation for Newtonian theories.
White (2006a) has pointed out that subjects when confronted with a launch-
ing event tend to view Object X as the agent and Object Y as the patient (or
cause and effect object in his terminology). This so-called causal asymmetry ef-
fect manifests itself in the preferred descriptions of subjects. They tend to
describe the launching scene as an event in which “X launched Y” instead
of the equally valid description that “Y stopped X.”Moreover, force estimates
for X tend to be higher than force estimates for Y. Both findings are indicators
of the underlying dispositional distinction between causal agents and causal
patients, according to White (who uses the terms cause object and effect ob-
ject). Causal asymmetry contradicts Newtonian physics because the physical
force on Object Y exerted by Object X is equal in magnitude (but opposite
in direction) to that on Object X exerted by Object Y. From a Newtonian
perspective, the collision is perfectly symmetric, and both descriptions (ie,
“X launched Y” and “Y stopped X”) should be equally appropriate.

White (2009) has proposed a dispositional theory of causal asymmetry
that links perceived scenes to stored representations of sensomotoric experi-
ences of our actions on objects (seeWolff & Shepard, 2013, for an alternative
theory). According to White, we experience our own agency and the force



Hybrid Causal Representations 117
we impose upon objects we manipulate during the course of our ontoge-
netic development. When perceiving a scene, we compare the movements
of the objects with these stored representations. We tend to overestimate the
force of the causal agent (cause object in his terminology) relative to
the counterforce of the manipulated patient (ie, effect object) because the
(counter-)force exerted by the patient is perceptually attenuated in cases
in which we manipulate objects (ie, the source of our stored representa-
tions). White’s theory is a unitary dispositional theory: Both the description
of causal scenes and the attribution of forces are driven by the asymmetry of
the agentepatient relation, which is primary in White’s theory.

In our view, causal perception of collision events is better captured by a
hybrid account that combines a dispositional component and a process
component. First, we will show that linguistic descriptions of perceptual
causal scenarios are influenced by dispositional properties of objects in the
scene. This speaks against a pure process account of causal perception and
is consistent with White’s view. However, we also show that measures of
properties of the observed causal process (ie, perceived forces) do not neces-
sarily covary with dispositional assignments, which contradicts White’s uni-
tary account according to which both linguistic descriptions and force
assignments are influenced by the dispositional properties of the observed
interacting causal objects (see White, 2014, for a different view).

To disentangle agency and force judgments from the observed collision
event, we conducted two sets of experiments. In our first set, our goal was to
dissociate agency assignment from the collision event, which are typically
confounded in the Michotte task (see Mayrhofer & Waldmann, 2014, for
a more elaborate description). Our experimental goal was to keep the colli-
sion event constant but manipulate agency through indicators that are
perceptually available prior to the collision event. Thus, in all conditions
of our experiments, the events at and after the collision of Balls X and Y
were identical. Therefore, all factors leading to the distinction between
agent and patient that were associated with the moment of collision and sub-
sequent events were kept constant.

To manipulate agency using features available prior to collision, we
turned to Dowty’s (1991) theory of agency, which he had developed to
explain how people distinguish between agents and patients in language.
Dowty suggests that agent and patient roles are prototype concepts. For
example, a prototypic agent is, among other properties, volitional, sentient,
and causes or changes an outcome. None of these features is necessary
for agency, but the more features a causal participant shares with the
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agent or patient prototype, the more likely it is that it plays the respective
semantic role.

Dowty’s (1991) features were developed with language in mind; there-
fore, we adapted his list to the Michotte task so that it applies to movements
in perceptual scenes. Thereby we focused on features that can be seen in the
precollision phase. It is notable that most of Dowty’s properties constituting
the prototype of an agent can be viewed as properties of active human
interventions.

One important property of agents is that they tend to move prior to con-
tact while the patient remains stationary until launched. Thus, following
White (2006b), we expected that moving objects should be attributed
more agency than stationary ones. Relative movement was our first feature
distinguishing agents from patients.

As a second feature, we manipulated the sequence of appearance of
causal participants. Since a prototypical agent intervenes into an existing sce-
nario that is either stationary or changing in a predictable way, the object
that enters the observed scene last should tend to be attributed relatively
more agency than objects that are already part of the observed scene. To
test this hypothesis, we kept the movements constant, but manipulated
the sequence of visibility by hiding parts of the scene.

Finally, we manipulated cues indicating volitional action which is a key
property of human intervention: When a spontaneously moving object
behaves in a manner not obviously explainable by physical knowledge
(eg, self-propelled motion), the object’s behavior tends to be interpreted
as a volitional act by an animate agent (see Csibra, Gergely, Bír�o, Koos,
& Brockbank, 1999; Muentener & Carey, 2010; Saxe, Tenenbaum, &
Carey, 2005).

We manipulated these precollision cues to disentangle factors affecting
agency from the properties at and after the collision. White’s (2009) exten-
sive set of studies shows that the launching event at the point of contact con-
stitutes a strong cue suggesting Object X to be the agent and Object Y the
patient. Since the launching event was kept constant, our goal therefore was
to test how much the precollision cues we tested can override the cue that is
inherent in the causal interaction.

We tested the influence of the three precollision cues on agency assign-
ments in four within-subject conditions of an experiment (see Mayrhofer &
Waldmann, 2014; Experiment 2). In all conditions, the movement proper-
ties of the two objects at and following the collision event were kept con-
stant. Thus, when Ball X, coming from the left side, hit Ball Y, Ball X



Figure 10 Results of experiment (error bars indicate standard error of means). From
Mayrhofer, R., & Waldmann, M. R. (2014). Indicators of causal agency in physical in-
teractions: the role of the prior context. Cognition, 132, 489. Adapted with permission from
Elsevier.
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stopped and Ball Y moved toward the right hand edge of the screen (see
Fig. 9). In all conditions, Ball Y stood still in the middle of the screen imme-
diately prior to contact. Condition A (Fig. 9, top row) represented a standard
Michotte launching case in which Ball Y stands still in the middle of the
screen until launched by Ball X. Here Ball X should be clearly viewed as
the agent. In all other conditions, Ball Y moves from the bottom of the
screen toward its collision point where it stops 300 ms prior to the collision.
By hiding either the left margin (Condition B; second row in Fig. 9) or the
bottom margin (Condition C; third row in Fig. 9) or by letting Ball Y start a
self-propelled movement (Condition D; bottom row in Fig. 9), we added in
each condition one additional agency indicator suggesting Ball Y as the
agent (for details see Mayrhofer & Waldmann, 2014).

Fig. 10 shows the results of the experiment (Experiment 2, Mayrhofer &
Waldmann, 2014). As an indicator of agency attributions, we asked subjects
to rate on a scale from 1 to 10 how much they agree with the statements “X
launched Y” or “Y stopped X,” respectively (which in a specific condition
was, for example, instantiated as “The red ball stopped the blue ball.”). As
can be seen in Fig. 10, adding features of agency to Ball Y (successively
from Conditions A to D) clearly had an impact on the ratings. The more
agency cues for Ball Y were present, the higher was the agreement with
the statement that “Y stopped X.” However, in no condition agency attri-
butions for Y turned out to be higher than for X. This is to be expected
because the collision event, which was kept constant across conditions,
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generally leads to the strong impression that Object X is the agent. In sum,
the experiment showed that dispositional assumptions triggered by percep-
tual cues influence causal perception, contradicting a Newtonian (Sanborn
et al., 2013) or a pure causal process account.

In an additional set of experiments, we were interested in the second in-
dicator of causal asymmetry, force asymmetries. Asymmetric force ratings for
agents and patients have been viewed as another hallmark evidence for
dispositional theories (see White, 2009). Although dispositional theories
explain force asymmetry as due to the asymmetric roles of agent and patient
in causal interactions, in most studies agency has not been manipulated inde-
pendently of properties of the collision. This confounding opens up the pos-
sibility that properties of the collision (eg, pre- and postcollision velocities)
may independently influence agency and force perception, thus creating a
spurious correlation.

In order to test whether causal agency influences force judgments, we
again manipulated agency indicators independent of an otherwise invariant
launching event (Mayrhofer & Waldmann, 2016, for a more detailed pre-
sentation). We focused on two conditions, the standard Michotte launching
event (Condition A in the previous set of studies, Fig. 9) and the condition in
which we presented all three additional agency cues for Ball Y (intervention
condition; corresponding to Condition D, Fig. 9). We chose these two con-
ditions because they led to the strongest effect on agency attributions in the
previous study. In the present study, we measured agency attributions using
a forced choice measure by presenting subjects with the two alternative
statements “X launched Y” and “Y stopped X” (see also Mayrhofer &
Waldmann, 2014; Experiment 1). Additionally, we requested subjects to
rate the forces attached to X and Y using a rating scale ranging from 0 to
100. This time we ran the study online as a between-subjects design.

The results were clear (see Fig. 11). The force ratings (right panel)
exhibited a clear causal asymmetry effect. Object X was uniformly assigned
more force than Object Y. However, whereas we found significantly more
attributions of agency for Y in the intervention than in the standard condi-
tion (left panel), the different agency attributions in the two conditions had
no effect on the force ratings. This pattern was replicated in a second study
(Mayrhofer & Waldmann, 2016; Experiment 1).

The results of the experiment cast doubt on the adequacy of theories
based on Newtonian physics (Sanborn et al., 2013) and on purely disposi-
tional theories (White, 2009). Noisy Newton theory has problems with
explaining the stable findings of agency and force asymmetries, whereas



Figure 11 Relative frequency of causal-agency assignments (A) and force ratings (B) for
Ball X and Ball Y in the two movement conditions (standard launching vs. intervention).
Error bars indicate 95% confidence intervals. Mayrhofer, R., & Waldmann, M. R. (2016).
Causal agency and the perception of force. Psychonomic Bulletin and Review (in press).
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dispositional theories arguing for a direct link between agency and force as-
sessments cannot explain the dissociation between the two measures in our
experiments.

A psychological version of causal process theories may be an alternative
candidate for explaining force asymmetry. According to Dowe (2000),
causal processes carry a quantity, such as linear momentum, mass-energy,
or charge, which is conserved within the process. Of course, only experts
know these physical quantities whereas most subjects do not have deep
knowledge about physics (see Rozenblit & Keil, 2002). However, despite
the lack of elaborate physical domain knowledge it seems plausible to assume
that even laypeople represent the Michotte task as a causal process in which
some sort of hidden placeholder property is transmitted when Ball X moves
toward Ball Y and makes contact. A psychologically plausible candidate for
such a property might be the (pre-Newtonian) concept of impetus, which is
usually represented as an internal force that keeps an object moving and
which can be assumed to be transferred from one object to another in a colli-
sion event (see, eg, Kozhevnikov & Hegarty, 2001; McCloskey, 1983). If
force intuitions traced the transference of such impetus (ie, internal force),
one would expect an asymmetrical assignment of forces that expresses the
directionality of the causal interaction. Force asymmetry then can be used
as one of several cues of an agent prototype rather than an effect of it as
in White’s (2009) theory. This finding again suggests a hybrid account; in
this case a combination between dispositional and causal-process theories.
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5. CONCLUSION

The main goal of this chapter was to defend a new view on causal
reasoning, a hybrid representation account. In our review of theoretical
frameworks, we have shown that different types of theories of causal
reasoning compete with each other, each endowed with its distinctive
strengths and weaknesses and its preferred domains of application. We
have argued that despite the beauty of a parsimonious unitary account, there
is little reason to assume that people are restricted to one type of represen-
tation of causal scenarios. When trying to make sense of the world, we
receive information in different input formats which we then have to trans-
late into some plausible representation of the causal texture of the world.
Unlike in the psychological laboratory, we are rarely confronted with
conveniently precategorized representations that invite us to only use a spe-
cific framework of causal reasoning.

In contrast to causal pluralism, which postulates the coexistence of inde-
pendent modes of causal reasoning, our aim was to show that competing
representations not only coexist, they can also actively influence each other.
In three empirical case studies, we have demonstrated how dependency,
dispositional, and process representations mutually interact in generating
complex representations driving causal inferences. Using computational
modeling, we have in two of these three case studies demonstrated how
we envision the interaction between the frameworks in the particular cases.

Our three case studies just represent a first step in the direction of devel-
oping a hybrid account of causal reasoning. Future empirical studies will have
to systematically explore when and how different competing representations
influence each other. So far we have mainly focused on the standard exper-
imental tasks that present causal situations in ways optimized for the modeling
goals of the favored framework. To overcome these limitations, it would be
desirable to study more realistic scenarios that are closer to what we encounter
in our everyday experience. When learning about causal relations, we often
combine different sources of knowledge that influence each other. In partic-
ular, studying the interaction between causal intuitions conveyed by linguistic
cover stories and statistical input seems to be particularly important to under-
stand the results of experiments in which typically both sources of causal
knowledge are provided. It is unfortunate that theoretical models usually
only focus on the experiential input while the role of the linguistic cover stor-
ies is not addressed. Our Case Study 1 is just a first step in the investigation of
the interaction of these two sources of knowledge.
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So far the general strategy in research on hybrid representations has been
to show how knowledge from different sources constrain causal representa-
tions. Of course, the most ambitious goal for future research is to develop a
more general hybrid theory of causal reasoning that combines concepts from
the all three frameworks within a unified theory.
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